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Abstract. We have derived series for weakly and strongly embeddable trees in d- 
dimensional simple hypercubic lattices for arbitrary integral d. For d =2,3,  . . . , 9  we 
present series evidence that such trees are in the same universality class as lattice animals. 
In addition we have derived expansions in inverse powers of cr = 2d - 1 for the growth 
parameters for bond and site trees and compare these with the corresponding results for 
animals. 

1. Introduction 

The statistics of branched polymer molecules with excluded volume have been model- 
led by lattice animals, i.e. connected clusters embeddable in a regular lattice (Lubensky 
and Isaacson 1979). There have been several recent studies using field theoretic 
methods (Lubensky and Isaacson 1979), position space renormalisation group methods 
(Family 1980), Monte Carlo methods (Redner 1979) and series analysis methods 
(Duarte and Ruskin 1981) of the importance of cycles in determining the statistics of 
branched polymers. These studies suggest that lattice embeddable trees (i.e. branched 
polymers without cycles) are in the same universality class as lattice animals (i.e. 
branched polymers with no restrictions on the number of cycles). In addition, Seitz 
and Klein (1981) have used Monte Carlo techniques to estimate the exponent (v) 
characterising the asymptotic behaviour of the mean-square radius of gyration for 
trees and find a value of v = 0.615 in two dimensions. This should be compared with 
v = 0.66 for lattice animals (Stauffer 1978, Herrmann 1979) and v = 0.57+0.06 for 
the particular branching model discussed by Redner (1979). While this numerical 
evidence is not entirely convincing, it is possible that these three problems are 
characterised by the same exponent. 

In 00 2 and 3 of this paper, we derive series expansions for the numbers of trees 
embeddable in the d-dimensional simple hypercubic lattice, for arbitrary integral d.  
We consider both weakly embeddable (bond) clusters, which are the more natural 
model of branched polymers, and strongly embeddable (site) clusters which, on general 
grounds, are expected to be in the same universality class. These series extend through 
nine sites for both weak and strong embeddings. For the special cases d = 2 and 3, 
Duarte and Ruskin (1981) have derived series for the square-lattice site trees to 
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seventeen sites, the simple cubic site trees to ten sites and the simple cubic bond trees 
to nine bonds. We have confirmed their results for the square-lattice site trees and 
extended each of their series for the simple cubic lattice by one term. For the 
square-lattice bond trees we have extended our general d results from eight bonds 
to eleven bonds. 

Analysis of these series strongly suggests that, for any d, trees and animals are in 
the same universality class. 

If A ,  is the number of site animals with n sites, Klarner (1967) has shown that 

0 < lim n-' log A ,  =log A, < Co. (1.1) 
,-roo 

Similarly, if a, is the number of bond animals, an analogous argument (Whittington 
and Gaunt 1978) can be constructed giving 

O <  lim n-'loga,=logh.<Co. (1.2) 
n-m 

We shall use upper (lower) case letters for the numbers and growth parameters of 
strongly (weakly) embeddable clusters. An appropriate subscript (in this case 'a' for 
animal) will be appended when necessary. 

Using similar arguments, one can show (Klein 1981) that 

0 < lim n-' log t ,  =log A. < 03 (1.3) 

where t, is the number of weakly embeddable trees with n bonds, and a corresponding 
result can readily be derived for strongly embeddable trees with n sites. In this case 
the subscript zero signifies that the maximum number of allowed cycles is zero. 

In § 4 we derive expansions in inverse powers of U (= 2d - 1) for A. and A. and 
comparison with corresponding results (Gaunt et a1 1976, Gaunt and Ruskin 1978) 
for A, and Aa strongly suggests that A o < A a  and A o < A a  for all d. These conclusions 
are supported by the series analysis results. 

Gaunt et a1 (1979) have considered the problem of lattice animals in which the 
valence of each site is restricted to be less than or equal to some prescribed value 
(U). This problem is of interest as a model of steric hindrance in branched polymers 
and polymer gels. It appears that restricted valence animals with U = 3 ,4 ,  . . . , Q, 
where Q is the lattice coordination number, are in the same universality class, while 
U = 2  is in a different universality class (Gaunt et a1 1979, 1980, Whittington et a1 
1979). In 0 5 ,  we derive series for restricted valence site trees for the square and 
simple cubic lattices. Analysis of these series strongly suggests that trees with U a 3  
are in the same universality class as unrestricted trees (U = Q). 

n-oo 

2. Bond clusters 

We have derived expressions for the numbers of weakly embeddable trees with n 
bonds ( n  s 8 )  for the hypercubic lattic in d dimensions. These were obtained from 
the bond perimeter polynomials given by Gaunt and Ruskin (1978) in equation (2.1). 
To extract this information we note that the coefficient of q Z ( n d + d - n )  in the perimeter 
polynomial D, is the number of strongly embeddable trees with n bonds. Similarly 
the coefficient of qz(nd+d--n)-p , p = 1 ,2 ,  . . . , will be the number of trees with precisely 
p neighbouring contacts, i.e. pairs of neighbouring sites not joined by a bond. Summing 
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these contributions gives the total number of weakly embeddable trees with n bonds, 
namely 

tl = (9 
f2 = (3 + 4(3  
t 3  = (f) + 20(;) + 32(:) 

t 4  = (f) +€is(;) + 420(3d) + 400(,d) 

t5 = (9 + 362(;) + 4  140(:) + 10 368(:) + 6 912(2) 

t 6  = (f) + 1 572(;) + 37 745(:) + 185 976(,d) + 301 840(:) + 153 664(:) 

t7 = (f) + 6 984(;) + 337 032($) + 2 914 304(2) + 8 622 080(:) 

+ 10 223 616(:) + 4  194 304(7d) 

ts = (4 + 31 579(;) + 3 009 273(:) +43 043 049(,d) + 206 473 320(:) 

+ 427 217 328(:) + 396 809 280(7d) + 136 048 896(:) (2.1) 

where (3 are binomial coefficients. 

and the extended series are given in table 1. 
In addition we have extended these series for the square and simple cubic lattices 

Table 1. Numbers of bond trees f,,(d) and site trees T,,(d) on the square (d = 2) and simple 
cubic (d = 3) lattices. 

1 2 1 3 1 
2 6 2 15 3 
3 22 6 95 15 
4 87 18 678 83 
5 364 55 5 229 486 
6 1574 174 42 464 2 967 
7 6 986 570 357 987 18 748 
8 31 581 1908 3 104 013 121 725 
9 144 880 6 473 27 511 300 807 381 

10 672 390 22 202 248 160 162 5 447 203 
11 3 150 362 76 886 37 264 974 
12 268 352 
13 942 65 1 
14 3 329 608 
15 11 817 582 
16 42 120 340 
17 150 682 450 

We have analysed all the data above using standard ratio methods (Gaunt and 
Guttmann 1974). Defining the ratios for the numbers of trees 

A d n )  = L / L i  (2.2) 
and their linear extrapolants 

~ b ( n ) = n ~ ~ ( n ) - ( n - l ) ~ ~ ( n  - 1 )  (2.3) 
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we estimate the exponent Bo in the expected asymptotic expression 

(2.4) 

= n { l  -[Ao(n)/Ab(n)l}. (2 .5 )  

-e t n - n  O A ;  

from the sequence 

For the square lattice the values of e&) are shown in figure 1. For comparison we 
include the estimates of the corresponding exponent (e )  for the total numbers of bond 
animals. These data provide strong support for the conjecture that eo = 8. Universality 

0 2  0 1  
l l f l  

Figure 1. Ratio estimates of the exponent 
the square lattice. 

for bond trees (+) and bond animals (0) on 
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arguments coupled with the relationship to the Yang-Lee edge singularity (Parisi and 
Sourlas 1981) suggest that 8 = 1 in two dimensions. Hence it follows that Bo = 1. For 
d a 3, the corresponding results for eo (see table 2) for the hypercubic lattices are in 
good agreement with previous estimates of 8 (Gaunt 1980), and for the higher values 
of d the plots of the extrapolants for 8 and 80 essentially coincide. 

Table 2,. Estimates of exponents and growth parameters for bond clusters. AB0 = Bo - 8 0  

where Bo is our central estimate. 

d Bo Ao Ab“’ 

l . O O *  0.02 
1.55*0.05 
1.91t0.1 
2.21t0.2 
2.3 f 0.2 
2.4k0.2 
2.5 f 0.2 
2.5 k 0.3 

5.14*0.01+ O.26ABO 
10.53 f 0.07 + O.6ABO 

22.1 i0.9+2.0ABO 
i 6 . 2 i 0 0 . 4 +  1 . 4 ~ ~ ~  

2 7 s i  i . 3 + 2 . 6 ~ ~ ~  
3 3 . 0 i  1.7 +3.2ABo 
39 .0~t  2.2 + 3.9hBo 
44.5*2.5+4.5ABo 

4.88 
10.98 
16.75 
22.38 
27.94 
33.47 
38.97 
44.46 

In view of the above results we form biased estimates of Ao,  

where we use the best available estimates (Gaunt 1980) of the bond animal exponent 
6, except that for d = 2 and 3 we use the values given by Parisi and Sourlas (1981), 
and for d 2 8  we use the mean field value of 8. These estimates approach A. from 
above while the sequence given by equation (2.3) approaches A. from below. We 
form the sequence 

(2.7) 

which, it transpires, is only very weakly dependent on n. The final estimates of A. 
formed in this way are given in table 2. The error estimates given differentiate between 
the inherent uncertainty and the uncertainty induced by errors in the estimate of 0. 
In two dimensions the inherent error bars of the estimates of A, (Gaunt 1980) and 
A. (table 2) do not overlap, which strongly suggests that A 0  is strictly less than A,. In 
higher dimensions the error bars do overlap. Nevertheless, we strongly suspect that 
A. < A, for all d and we present some evidence for this in § 4. 

It is possible, using an extension of the methods used by Whittington and Gaunt 
(1978), to show that 

log 2 m log(dt,) (2.8) 

for any m for a d-dimensional hypercubic lattice. For d =2, using m = 11 we obtain 
A o s 4 . 1 5 0 7 . .  . while for d = 3 using m = 10 gives A037.7123 . . . . Although these 
bounds are rather weak (cf table 2) they are sufficient to prove rigorously that A. > F, 
where CL is the self-avoiding walk limit, i.e. the exponential of the connective constant 
of the lattice. 
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3. Site clusters 

The numbers (T,)  of trees with s sites strongly embeddable in the d-dimensional 
hypercubic lattice (site trees) can he obtained from the bond perimeter polynomial 
D,-l(q) given by Gaunt and Ruskin (1978), as the coefficient of the highest power of 
q. The results are given below for s S 9. 

TI = 1 
T2 = (3 
T, = (f)  + 4(:) 
T4 = (f) + 16(:) + 32(:) 

Ts = (f) + 53(3 + 324(:) +400(,d) 

T6 = (t) + 172(%) + 2 448(:) + 8 064(,d) + 6  912(;') 

T7 = (f) + 568(:) + 17 041(:) + 112 824(4d) + 239 120(:) + 153 664(:) 

T, = (f) + 1 906($) + 116 004($) + 1 382 400(:) + 5 445 120(;1) 

+ 8 257 536(2) + 4  194 304($) 

T9=(;')+6471(:)+787 965(:)+15 998 985(:)+104454 120(5d) 

+ 280 717 488(2) + 326 265 408(7d) + 136 048 896(:). (3.1) 
We have extended these series for d = 2 and 3 to s = 17 and s = 11, respectively, 

and the results are given in table 1. Using the methods described in 0 2 we have 
analysed all of the above series and the results are given in table 3. 

Table 3; Estimates of exponents and growth parameters for site clusters. ABo = 00 - B o  
where Bo is our central estimate of Bo. 

d eo Ao Ab"' 

l . O *  0.1 
1.5*0.1 
1.9*0.1 
2.15 i0 .15  
2.3k0.2 
2.4i0.2 
2.5 * 0.3 
2.5 k 0.3 

3.795 ~ 0 . 0 0 7 + 0 . 1 5 ~ e ,  
7.85 i 0.05 + 0 . 4 ~ ~ ~  

12.7 * 0.3 + o.9ise0 
i7.9*0.5 + 1 . 4 ~ 8 ~  
23.3 * 0.7 + 1.8hBo 
28.8* I . o + ~ . ~ A B ,  
3 4 . o i  i . 2 + 2 . 8 ~ e ~  
39.5 * 1.5 +3.2he0 

2.25 
7.32 

12.61 
17.96 
23.34 
28.74 
34.15 
39.57 

The agreement between these estimates of Bo and the corresponding estimates for 
bond trees (table 2), bond animals and site animals (Gaunt 1980) is excellent. If we 
compare the estimates of A. with the estimates of Aa given by Gaunt (1980) we see 
that the central estimates of A. are always less than the central estimates of A,. In 
addition, for d s 4, the inherent error bars (i.e. not including uncertainties in the value 
of the exponent) of A. and A, do not overlap which strongly suggests that A. < A,. 

Following the arguments of Whittington and Gaunt (1978) it is easy to show that 

(3.2) log A. 3 m-' log(dT,,,). 
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Using the last available series coefficient in (3.2) gives A o 3  3.1533 . . for d = 2 and 
A025.3910,. .for d = 3. In fact, repeating this procedure for d = 4 , 5 , 6 . .  . (3.2) 
shows that A. > (2d - 1) > k. 

4. Expansions in inverse powers of dimension 

In this section we derive expansions for A. and A. in inverse powers of U = Q - 1 = 
2d - 1. 

Equation (2.1) can be written as 

t,(d) = 2"(n + l)"-'(;) +2"-'(n + l y 4 ( n  - l)(n + 1)(2n - l)(,dl) 

+2"-4(n + 1)"-6(n -2)(n + 1)2(12n4-20n3-33n2-46n +195)(,'!2) 

+. . * + (t'). (4.1) 

This can be obtained from equation (2.4) of Gaunt and Ruskin (1978), which is the 
corresponding result for bond animals, by omitting terms corresponding to contribu- 
tions from clusters containing cycles. 

Following the general procedure outlined by Gaunt and Ruskin (1978) we expand 
the binomial coefficients in inverse powers of U giving 

n (n - l)(n - 2)(3n2 - 82n + 155) -2 
U +,..) 

n !  24(n + 1)3 tfl (4 = 

(4.2) 
Hence 

InAo(d)= lim n-'lnt,(d)=Incr+l-$~~'-2$~-~-.. . . (4.3) 
"-roo 

This can be written as 

Ao(d) = B (U)( 1 - 2&* + . . .) 

B(U)  = U U / ( U  - 1y-l 

(4.4) 

(4.5) 

where 

the Bethe approximation to the number of lattice animals. 

T,(d) = 2 S - 1 ~ S - 3 ( l d l ) + 2 s - 3 ~ S - 5 ( ~  -2)(2s2-7s + 12)(,!2) 

For the corresponding site problem it can be shown that 

+2s-5ss-7(s - 3);(12s5 - 116s4+459s3 -916s2+ 1044s -720)(,!3) 
+. . . + (;i) (4.6) 

(4.7) 

and hence that 

In Ao(d) =In U + 1 - 2 4 ~ - ~ - 2 2 ~ - ' - - .  . . 
or, alternatively, 

~ ~ ( d )  = ~ ( ~ ) [ i  - 2~~ + 0 ( ~ - ~ ) 1 .  (4.8) 
Although these series are probably asymptotic, comparison of (4.4) and (4.8) 

suggests that Ao(d)  < Ao(d) for all d. Similarly, comparison of (4.4) and (4.8) with the 
corresponding expansions for A, (Gaunt and Ruskin 1978) and A, (Gaunt et a1 1976) 
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suggests that the rigorous results A o s A, and A0 S A a  are in fact strict inequalities for 
all d. 

For d = 2,3,  . . . , 9  we have estimated A. and AO by truncating (4.4) and (4.8) after 
the last term given, and the resulting estimates, Ab"' and A r ' ,  are presented in tables 
2 and 3 respectively. These estimates agree with the series estimates, to within the 
inherent uncertainties in the latter, when d 2 5 for bond trees and when d a4 for site 
trees. As expected, the agreement improves as d increases. 

5. Restricted valence site trees 

In this section we investigate whether restricting the maximum allowed valence of 
sites in a tree changes the universality class. 

We have enumerated site trees with maximum valence U = 2 , 3 , .  , . , Q for the 
square and simple cubic lattices. For U = 2 the resulting trees are the neighbour 
avoiding walks (Whittington et ai 1979, Gaunt et a1 1980). We give the results for 
3 s v < Q in table 4. 

Table 4. Numbers of restricted valence site trees on the square and simple cubic lattices. 

Square Simple cubic 

n v = 3  v = 3  v = 4  v = 5  
~ 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

1 
2 
6 

18 
54 

170 
552 

1828 
6 132 

20 796 
7 1  212 

245 744 
853 500 

2 980 892 
10 461 630 
36 871 562 

1 
3 

15 
83 

47 1 
2 805 

17 271 
109 167 
704 331 

4 619 459 
30 709 443 

1 
3 

15 
83 

486 
2 961 

18 693 
121 257 
803 526 

5 415 905 
37 014 099 

1 
3 

15 
83 

486 
2 967 

18 747 
121 719 
807 336 

5 446 847 
37 262 148 

Standard series analysis methods yield for the square lattice 

A O ( U  = 3) = 3.75 f 0.02 

and, for the simple cubic lattice 

A ~ ( u  =3)=7.62*0.08 

A O ( U  =4)=7.835*0.035 

A O ( U  = 5) = 7.845 * 0.05. 

(5.1) 

(5.2) 
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The estimates of the corresponding exponent are 1.00*0.07 for the square lattice 
and 1.5 k 0 . l  for the simple cubic lattice, for U = 3 , 4  and 5 .  Thus, restricted valence 
trees for U 3 3  appear to be in the same universality class as unrestricted trees and 
both valence restricted and unrestricted animals. However, trees with U = 2 are in 
the same universality class as self-avoiding walks, for which the exponents are approxi- 
mately - f  in two dimensions and -2 in three dimensions (Watson 1970, Torrie and 
Whittington 1977, Gaunt et a1 1980). 

6. Summary 

The primary result of this paper is that, for hypercubic lattices from two dimensions 
up to and including the upper critical dimension, both site and bond trees are in the 
same universality class as both site and bond animals. This strongly supports the 
proposal (Lubensky and Isaacson 1979) that in branched polymers the universality 
class is independent of cycle fugacity. 
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